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ABSTRACT 

Malware is software that enables adversaries to execute their goals by affecting 

their target devices’ confidentiality, integrity, or availability. Malware is 

constantly evolving and detection methods must find ways to detect the new variants. 

This research developed a new method of detecting malware using a neural-network 

architecture.   The method is not signature-based, unlike most existing methods, 

and would aid in finding previously unseen malware. It analyzes software 

using three separate static-analysis methods to obtain a list of features, which 

when input into the neural network are used to classify the software as malware or not 

malware. The three methods were the binary-to-grayscale, statistical-N-grams, and 

dynamic-link-libraries. The binary-to-grayscale approach performed poorly. The 

other two strategies performed better, but had room for improvement; statistical-N-

grams and dynamic-link-libraries showed complementary results that suggest combining 

them would yield a more effective detection method. 
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I. INTRODUCTION 

Malware is software that intends to act in a harmful or intrusive manner toward a 

target computer device. Categories of malware are Trojan horses, viruses, worms, 

ransomware, spyware, adware, rootkits, keyloggers, and backdoors. Malware enables 

adversaries to execute their goals against a target, allowing them to compromise the 

device’s computer-security triad of confidentiality, integrity, and availability.  

Computer scientists over the years have developed detection techniques to 

identify malware executables (binaries). Traditionally, antivirus software relies on 

signatures to identify malware. A signature is a unique pattern of bits that can identify a 

file, like a fingerprint. However, like the flu virus, malware may be designed to mutate to 

help it survive and fool a system’s detection mechanisms while retaining its functionality. 

A few minor modifications to malware can change its signatures and that often suffices to 

cause a signature-based detection system to fail. 

As computation speed has increased and machine-learning algorithms have 

gained popularity, antivirus detection has evolved in its scope to attempt detection of 

malware previously unidentified (zero days) using signatures. To aid in this 

identification, various machine-learning algorithms are available. These algorithms have 

gained wide use in fields such as marketing, finance, genetics, and manufacturing. Data is 

analyzed to obtain a set of features that are then used as input to predict a result. Usually, 

the algorithms attempt to duplicate a specified set of outputs for a set of inputs given in a 

training set algorithms like support-vector machines, nearest-neighbor inference, and 

Naïve Bayes have been popular (Fatima & Pasha, 2017; Jahan, 2018, Muja & Lowe, 

2014). Lately, the use of neural networks has begun to show promise in a variety of 

applications. 

Neural networks are a form of neural-network learning methods where a network 

is trained on data that have already been classified by a reliable method (has a “ground 

truth”) (Kelleher, Namee, & Darcy, 2015). This study focused on malware identification, 

and the ground truth was the identification of whether a binary image of an executable 
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file was malware or not. The training of supervised models relies on the adjustment of 

weights. A set of input values and a set of weights on them, in multiple layers, are used to 

calculate output values. For training a neural network model with malware and benign 

binaries, a gradient-descent optimization algorithm can modify the weights within the 

“hidden” and “output” layers in the neural network. This adjustment of weights creates a 

non-linear function on the inputs that can extrapolate to new but similar kinds of 

malware. Many types of neural network architectures have evolved over time. 

This thesis did three static analyses that extracted features from executable 

binaries and used them as input to three neural network models in an attempt to identify 

malware. Binaries were restricted to Windows 7 executables. One model used the 

Cuckoo Sandbox software to extract API library calls, another used basic statistical 

analysis of N-grams in the binary, and one used a gray-scale image constructed from the 

binary. The models used feed-forward neural network architectures, and the image model 

also used a convolutional neural network. 

This thesis first discusses the background and the work related to malware 

detection in recent years. Then, the proposed methodology for the study is presented. 

Finally, the results and analysis are provided, along with the code used to obtain the 

results. The binary-to-grayscale image strategy performed the poorest of the three. 

Although the accuracies are not extraordinary, the other two strategies performed 

similarly to each other. The statistical-N-gram and dynamic-link-library strategies may 

even have complementary qualities, which may improve performance in a hybrid neural-

network architecture.  
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II. BACKGROUND 

Malware is computer software that performs malicious actions on a victim’s 

computer device without their consent. The actions performed depend on the type of 

malware. The types include ransomware, downloader, bot, dropper, worm, keylogger, or 

adware. Ransomware encrypts a victim’s data and holds the decryption keys for ransom. 

A downloader looks benign, but it will download something more malicious later. A 

“bot” allows malicious remote control of a computer or device. A dropper contains an 

obfuscated malicious binary within itself and “drops” it onto the victim’s computer. A 

worm steals data while propagating across networks. A keylogger tracks the keys typed 

on the victim’s computer. Adware is malicious code that propagates advertisements on a 

computer device.  

In the past five years, the number of malware samples per year registered by AV-

TEST Institute has increased over 262%, from 326 million samples detected in 2015 to 

856 million samples detected in 2018 (AV-Test, 2018). As the number of devices 

connected to the Internet continues to increase, there will likely be corresponding 

increases of the number of malware infections on those devices. Not only has the total 

amount of malware increased, so has the number of distinct variants (Symantec, 2018).  

Due to their simplicity and performance, signatures (distinctive bit patterns of 

known malware) are the most commonly used way to detect malware. However, 

signatures can only detect previously identified malware pieces; they have difficulty 

detecting new malware and variants of old malware with the same functionality 

(Symantec, 2018). The only way to really be sure about a suspicious binary would be to 

have it reviewed by an analyst who would likely use a combination of static and dynamic 

analysis techniques. Static analysis is the technique of analyzing the suspected malware 

without executing it. The binary can be disassembled to examine the instructions, file 

headers, program sections, import libraries, and statistical inferences. Authors of 

malicious binaries often understand static-analysis techniques and try to defeat detection 

measures using anti-analysis techniques such as obfuscation of the executable code. 
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Malware analysts can also examine a suspicious binary using dynamic methods 

within a “sandbox” environment. A sandbox is a separate environment that isolates the 

executing binary from affecting anything outside the environment. Although very 

effective, analysis may take days depending on the length and complexity of the binary. 

Having analysts review every binary that enters the network is not cost-effective. 

Automating this would require intelligent data analytics and computing ability 

comparable to the human analyst. Identifying malware is complex; for instance, a 

malware binary executing on one platform may provide different results than when it 

executes on a different platform. Therefore, we must construct models for each platform 

and its intricacies.  

This study examined Windows “portable executables” (PE file format). The 

Windows operating system is widely distributed across the globe and a popular target for 

attacks. When new files are introduced to a Windows system through downloads or 

storage transfer, they are usually analyzed by installed security software. This may 

include anti-virus software residing on the host system or an intrusion-detection system at 

the point of transfer. 

N-grams are a sequences of N successive items of a sample. Statistical analysis on 

N-grams is often done in static analysis of the byte sequence of a binary. Analysis of 

sequences is used across a variety of domains including speech recognition, biology, and 

chemistry; an example in biochemistry is looking for common amino acid strings 

(Osmanbeyoglu, 2011). For image analysis, the technique has gained much popularity in 

recent years due to its performance and accuracy; one project used N-grams in gray-scale 

images to detect objects in images (Bui, Lech, Cheng, Neville, & Burnett, 2016). 

Artificial neural networks were first introduced in 1958 by psychologist Frank 

Rosenblatt (Rosenblatt, 1958). However, they did not garner much attention until their 

recent success use with image and speech recognition. This has led researchers to 

experiment with the models and apply them to problems in many fields. In particular, 

convolutional neural networks have gained much attention for the task of image 

classification. An example of early convolutional neural networks (Cun, 1994) classified 

numbers. The network was greatly improved upon during the ImageNet competition in 
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2012 with the iteration called AlexNet (Krizhevsky, 2017), which added layers of 

convolution and pooling. It could classify more complex objects and object hierarchies. 

Convolutional neural networks have been applied mainly to image recognition and 

natural-language processing. In cybersecurity, neural networks are used to analyze 

network traffic, system logs, and binaries to detect malicious activity (Kolosnjaji, Zarras, 

Webster, & Eckert, 2016; Lopez-Martin, 2017). 

Static analysis on N-grams of disassembled binaries was performed by Hassen et 

al. (Hassen, Carvalho, & Chan, 2017). N-grams are a connected sequence of N terms of a 

sample; in our case, the terms are bytes. The study analyzed the binaries for N-gram 

features and applied random-forest and logistic-regression machine-learning models. 

They created frequency arrays for 2-gram, 3-gram, and 4-gram control-statement 

sequences. In addition, because many 4-gram and some 3-gram sequences were never 

observed, the study hashed the gram values into a smaller bit space; for example, 2-grams 

on bytes have 16 bits but were hashed to a 12-bit space. This thesis explored creating a 

smaller array space by focusing only on N-grams that occur most frequently, outside 

three standard deviations from the mean, were unique to either malware or benign 

samples. 

Other work (Gong, 2016) that attempted to detect malware in Windows portable 

executable files took three static approaches to obtaining features. One approach 

extracted the dynamic-link libraries used by the binary, another extracted particular 

strings in the binary, and another identified 2-gram sequences from random subsets of the 

binary. To extract the dynamic link libraries, the researchers use objdump (Stallman, 

1984). The terms and their frequency were recorded for all executables. Their analysis 

resulted in a feature set size of 414 of the most frequent DLL references discovered 

within their sample of executables. This is done in this thesis except fewer DLL 

references will be sought. In addition, this thesis also used section names, the total 

number of sections, and the average entropy across all sections to help distinguish 

executables. The study’s third technique, identifying 2-grams from a random subset of 

the binary, is also a bag-of-words style feature set. The bag-of-words approach operates 

by identifying a set of terms and recording the frequency of each term. It is considered a 
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“bag” because the order of the terms does not matter. This thesis also identified 2-grams 

from the binary in a bag-of-words fashion.  

Other work did malware classification by converting a binary into a gray-scale 

image, and then running it through a K-nearest-neighbors algorithm (Nataraj, 2011). The 

dataset was comprised of various families of malware without benign samples. The 

objective was to classify the malware as a backdoor, worm, Trojan, dialer, Trojan 

downloader, password stealer, or another of the 25 families they studied. The gray-scale 

image was created by interpreting each byte as a pixel value in the range 0–255; it was 

sampled, by taking the average of evenly spaced locations, to reach a feature set size of 

320, then used as input for the K-nearest neighbor algorithm. The classification reached 

accuracies above 98%. A similar malware classification on the Microsoft Kaggle 

classification challenge dataset was done in Gibert (2016) and Microsoft (2015). They 

modified the gray scale approach by sampling to a feature set size of 1024 to represent a 

32 x 32 image where each feature was a gray-scale pixel ranging from 0–255. Then the 

image was used as input for several convolutional neural network architectures. This 

work was adapted again for the use of malware detection (Kalash et al., 2018). This thesis 

sampled to a 1024 feature set with each pixel value ranging from 0–65535 so the gray-

scale range was extended to 16 bits instead of the 8 used in the previous studies. 

Nvidia, a producer of graphics processing units (GPUs), has published work in 

malware detection using similar algorithms on GPUs (Raff, 2017). This analyzed the 

entire binary’s raw bytes and input the information into various neural network 

architectures. One architecture featured a raw byte embedding strategy and another used 

a chunking strategy. This thesis took a simpler approach to the architecture and with 

sampling. 

Another study translated the bytes to machine language op codes and library calls 

as a primitive kind of disassembly before attempting to detect malware (Zak, 2017). They 

studied three methods: translation to instructions, translation to instruction-parameter 

types, and translation to function calls (El-Sherei, n.d.). Each N-gram was analyzed, 

translated, and input to a logistic regression model. 1-gram and 2-gram features were 

used in all three models; 3-gram and 4-gram features were used in the instruction 
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parameter type and function call translations; and 5-gram and 6-gram features were used 

for function-call translations. 

Attackers often employ obfuscation techniques that only become apparent when 

the binary is executed. For this reason, researchers have also explored dynamic features 

such as the sequence of system calls (Kolosnjaji, Zarras, Webster, & Eckert, 2016; Pfoh, 

Schneider, & Eckert, 2013; Attaluri, Mcghee, & Stamp, 2008). There have also been 

combinations of static and dynamic analysis using convolutional neural networks and 

feed-forward neural networks (Kolosnjaji et al., 2017). 
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III. METHODS 

A. DATA PREPARATION 

The test set used 5,518 binaries, where 3,251 malware samples were obtained 

from VirusShare and the other 2,267 were benign samples. All the malware was 

Windows PE files (VirusShare, 2018). The 2,267 samples labeled as benign were 

executables that were extracted from classroom computers and the NPS forensic 

collection DEEP (McCarrin, Gera, Rowe, & Allen, 2017). No benign samples were 

known malware. The malware obtained from VirusShare were confirmed as malware by 

several antivirus sources including Symantec, BitDefender, Microsoft, McAfee, and 

Kaspersky. 

The programs that performed the analysis were written in the Python 

programming language. The development and testing were done on an Ubuntu Linux 

distribution to avoid accidental contamination of the Windows malware since most 

malware is unlikely to infect a Linux system. Three separate analysis strategies were 

used. One converted a binary to a gray-scale image, one used statistical methods, and one 

identified the dynamic-link libraries and sections of the binaries. The gray-scale method 

and the statistical method were completed solely within the Linux environment using 

Python. However, the identification of dynamic-link libraries and sections in the binary 

used the Cuckoo Sandbox environment (Cuckoo, 2018) set up in a virtual machine using 

VMware with a Windows 7 Professional operating system.  

The binary to gray-scale analysis required preparation of the data. A directory 

with the test set was the input to the program. Then, each executable in the directory was 

read byte-by-byte as a binary number. A “summary” image of 32 x32 pixels, or 1024 

bytes, was calculated by averaging the bytes within the sub-windows, where the window 

size was proportional to the size of the file. Each 32 x 32 array was attached to a larger 

array containing all the file summaries in a directory. The processing flow is displayed in 

Figure 1. 
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 The sequence of steps from the binary samples to training 
the neural network using subsampled gray-scale images. 

When a binary file was opened, if its size was less than 2048, no subsampling 

occurred. Instead, every two bytes were treated as a 16-bit integer value, and the 

remaining spaces were assigned zeros. If the initial size is greater than 2048, the size was 

divided by 2048 and the result ignoring any fractional remainder was the number of 16-

bit values that were averaged together. For example, a modulo result from a file size of 

5,000 and the modulo parameter of 2,048 is 2.44. Truncating the decimal results in the 

integer 2 as the subsampling variable, so every two 16-bit values were averaged together 

and the remaining 904 bytes were dropped. The result is an array of 1024 16-bit values 

that is used as input for the neural network. 

The statistical method analyzed the binaries to extract N-grams that were input for 

machine learning. N-grams are N consecutive bytes in a sample. A feature-set array was 

created containing particular N-grams that were statistically significant for malware in 

the data. The data samples were split into two subsets, malware and benign. Four 

dictionaries for each subset were used to record the frequency of 1-grams, 2-grams, 3-

grams, and 4-grams. A scoring system was used to choose the N-grams added to the 

feature set using the distance of the malware fraction from the expected value in units of 

standard deviation calculated within each dictionary. N-grams with scores greater than 

three standard deviations from the mean were stored in an array we will call the feature 

set. Originally, the feature set had 32,768 N-grams which was far too large for 

processing. To reduce it, 3-grams were limited to the top 50 scores and 4-grams were 
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limited to the top 100 scores. The feature set was reduced to a total of 185 features to 

avoid overfitting. Of the 185 chosen, thirty-five were 2-grams, fifty were 3-grams, one-

hundred were 4-grams, and no 1-grams. 

To analyze a binary, the program extracted each N-gram in the binary and 

recorded its existence with the integer 1 in a separate array of length equal to the feature 

set array. Each binary was thus represented by a feature array of 1’s and 0’s. The 

processing sequence can be seen in Figure 2.  

 

 The sequence of steps from binary samples to training the 
neural network using n-gram features. 

Identification of dynamic-link libraries and sections within the binary was done 

with the Cuckoo sandbox environment (Cuckoo, 2018). The Cuckoo agent was installed 

on the Windows 7 system on a VMware virtual machine (VMware, 2018); Ubuntu was 

the base operating system used. The Cuckoo package “exe” was used to analyze each 

sample binary (Automated Process, 2015). Its output was a JSON-formatted file reporting 

the dynamic-link libraries identified, the sections, the entropy for each section, and other 

details. The names in JSON reports were counted and stored in a Python dictionary. The 

ten most frequently reported names were included in the feature set for each binary. In 

addition, the average entropy across all sections and the number of sections in the binary 

were used as features. The process flow is given in Figure 3. 
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 The sequence of steps from binary samples to training the 
neural network using dynamic link library and section data.  

B. NEURAL-NETWORK APPLICATION 

At the lowest level, an artificial neuron simulates a biological neuron where the 

dendrites accept an input and the axon outputs a signal (Rosenblatt, 1958). The neurons 

are structured into a network of layers. Typically, a neural network consists of an input 

layer, hidden layer(s), and the output layer. Each layer is fully-connected which means 

nodes (neurons) connect with every node from the previous and subsequent layer. The 

strength of the connection between the nodes is a weight that is determined through the 

training process. Usually, the training process uses backpropagation to adjust the 

weighted values to improve closeness to correct output. Figure 4 shows a typical plan. 

 

 Feed-forward neural network with fully-connected layers. 
Source: IIIT-H Virtual Labs (2018). 
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An enhanced neural-network structure is the convolutional neural network (Cun, 

1994). This structure is common for image classification and was used in our strategy 

that uses gray-scale images converted from binaries. When used for image classification, 

its hidden layers are a combination of convolutional and “pooling” layers followed by a 

“dense” layer. The convolution layer is paired with an activation function and the output 

layer is paired with a logistic function to provide a result between 0–1 for each node in 

the output layer. A convolution is an important technique used in signal processing and is 

defined as an inner product of two signals that form an output signal (Smith, 2012). The 

two incoming signals are the input signal and the impulse signal. For image 

classification, a convolution is where a digital filter (a kernel) is mapped to data and 

corresponding items are multiplied. There are three components in the process: the input 

data, kernel filter, and the output data. For images, the kernel filter is the impulse signal 

in the form of a square matrix. The kernel filter is laid “on top” of the input with the 

center of the filter corresponding to the location of the result in the output image, as 

shown in Figure 5. 

 

 Example convolution where the kernel filter, K, is laid on top of the 
image, I, resulting in image, I*K. Source: Spark (2017). 

To ensure the result size has the same size as the input, padding is usually added 

to the input prior to convolution in the form of a border of zeroes around the entire image. 

The convolution operation (layer) is usually followed by an activation function that 

normalizes it. This thesis used the rectified linear unit activation function “ReLU,” which 
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replaces negative numbers with a 0 and retains values greater than or equal to 0. The 

pooling layer is designed to reduce the data size in the number of nodes and parameters. 

The size of reduction is dependent on the size of the pooling filter and the “stride.” The 

pooling filter is like a border that surrounds a portion of the image, and some function is 

applied to the values within the designated border. In this study, the max pooling method 

was used which results in the maximum value within the border of a set of values. In the 

case of RGB images, each pixel contains three values, one for each color. Therefore, we 

can visualize the images as three layers of pixel values. Max pooling would output the 

maximum value within the set values contained in the specified border for each color 

layer. For our gray-scale images, a single value represents a pixel and therefore max 

pooling operates on the single layer. Thus, with a pooling filter size of 2 × 2, a set of four 

values are compared to determine the maximum value. The maximum value from each 

set is carried to the next layer. The stride determines how many pixels the pooling filter 

shifts between operations. For example, a 2 × 2 max pooling filter applied to a 4 × 4 

image with a stride of 2 would produce the output image shown in Figure 6. 

 

 Max pooling with filter size of 2 × 2, and stride of 2, 
applied to a 4 × 4 image. Li (2018). 

The dense or “fully-connected” layer is where each node from the previous layer 

connects to every node in the next layer (Figure 7). This layer is used in all three 

architectures.  
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 Example of a fully-connected layer. Source: Hollemans (2017). 

The output layer makes the classification. This thesis classifies binaries as 

malicious or benign, so there are two output neurons. The likelihood of each node is 

normalized using the logistic function softmax shown in Figure 8. 

 

 Softmax equation where K is the number of nodes in the 
output layer, and z is the value at that particular node. 

The result is a categorical probability distribution represented by values between 

0–1, at each output node. The sum of all output nodes equals 1. The output layer node 

with the largest value is the class that the neural network predicts. Training does 

backpropagation adjusting the weights to make a better prediction the next time. 

C. ARCHITECTURES 

A separate neural network architecture was used for each of the three analysis 

strategies. The binary-to-gray image method used a convolutional neural network and the 

other two strategies used a feed-forward network. The samples were split into 80% 

training and 20% test sets were used with 10-fold validation methods, meaning the 
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samples were randomly selected ten ways to avoid overfitting. The binary to gray-scale 

image architecture used a 2-dimensional convolutional neural network similar to one 

used in an example on the TensorFlow website (TensorFlow, 2018). This network design 

was chosen due to its simplicity and previous success with gray-scale images. The neural 

network had two convolutional layers, each followed by a pooling layer, and the final two 

layers were the dense layer and the output layer. The first layer used a kernel size of 5 × 

5, 2 border units of padding, 32 filters, and a ReLU activation layer. There were 32,768 

neurons in this layer and each one contained 25 inputs. Next, there was the pooling layer 

with pool size of 2 × 2 and stride of 2. This pooling layer reduced the image size to 16 

x16 and the size of the layer was 8,192 neurons, each with four inputs. The third layer 

was the second convolutional layer with the same activation and padding but with a 

kernel size of 3 × 3 and 64 filters. There were 16,384 neurons in this layer and each 

contained nine inputs. This was followed by a pooling layer identical to the previous one, 

reducing each image to 8 × 8, and the layer size was 4,096 neurons, each with four 

inputs. A dense layer followed with 1,024 neurons with 4,096 inputs each. The final layer 

was two output neurons with 1,024 inputs each. The model was trained using a gradient-

descent optimizer at a learning rate of 0.01. The neural-network architecture for the N-

gram strategy was a feed-forward model with an input layer taking input of the feature set 

of 185. It contained two hidden layers with sizes 16 and 4, respectively. In a feed-forward 

model, each neuron was connected to each neuron in the previous layer. The output layer 

was two nodes that predicted whether the input sample was malware or not. The model 

was trained using the Adam stochastic optimization algorithm (Kolkiewicz, 2010).  

The neural-network architecture for the dynamic-link library strategy was a feed-

forward model with an input layer having inputs of the feature set of twelve items. It had 

two hidden layers of sizes 6 and 3, respectively. Each neuron in the first layer had twelve 

inputs and second-layer neurons had six inputs. Like the other models, the output layer 

had two neurons that predicted whether the input sample was malware or not. The model 

was trained using the same Adam stochastic optimization algorithm used in the N-gram 

strategy (Kolkiewicz, 2010). The feed-forward architectures were implemented using the 

Python Sci-kit Learn library (Sci-kit Learn, 2018). 
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IV. RESULTS 

The binary-to-grayscale, statistical-N-gram, and dynamic-link-library strategies 

were tested with the previously described neural-network architectures. The binary-to-

grayscale strategy used the convolutional neural network architecture, while both the 

statistical-N-gram and dynamic-link-library strategies used a feed-forward neural 

network with different numbers of nodes per layer. All three architectures had two output 

neurons, one for each designated class, that output a probability value. The larger 

probability of the two output neurons identifies the prediction. The preprocessed inputs 

were split 80% for testing and 20% for training the models and used with the 10-fold 

validation method (that is, with ten random selections of the 80%–20% split).  

The models were evaluated using error-matrix metrics, overall accuracy, and 

average probabilities of the output neurons during testing. The error-matrix metrics 

included true positives, true negatives, false positives, false negatives, precision, recall, 

and f-score. The neural networks were designed such that malware was designated as a 

positive prediction (1), and the benign binary was designated as a negative prediction (0). 

If the neural-network model predicts the binary to be malware (1) and the actual 

classification is malware, it is counted as a true positive. If the prediction is malware and 

the true classification is a benign binary, it is a false positive. If the prediction was a 

benign binary (0) and the true classification is malware, it is a false negative. These three 

metrics provide the parameters for calculating precision, recall and f-score. Precision is 

the fraction of correct predictions of all predictions. Recall is the fraction of correct 

predictions of all positive samples identified. The f-score is a measure of accuracy that 

considers both the precision and recall. The equation is displayed in Figure 9. The generic 

accuracy, total number of samples correctly predicted in either direction divided by the 

total number of tested samples is also used to evaluate the data. 
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 F-score accuracy equation. 

Overall, the dynamic-link-library strategy and the N-gram analysis performed 

similarly by correctly predicting 90% of the samples. The gray-scale image strategy 

performed poorly in recognizing only 56% of the samples. 

A. STRATEGY I: BINARY TO 16-BIT GRAY-SCALE IMAGE 

The strategy of converting a binary to a 16-bit gray-scale image of size 32 × 32, 

from Figure 1, did not perform well. As shown in Table 1, it produced an accuracy of 

56%. Its recall is 100% but that is because no samples were predicted as benign: Every 

input was predicted as malware. In previous work, the convolutional neural networks 

used for malware classification used 8-bit pixel sizes (Kalash et al., 2018; Karaj, 2011) 

rather than 16 bits in our work. Our bit space per pixel was 256 times greater than in the 

previous work. The increased possibilities and the averaging caused by subsampling may 

have caused insufficient information for the neural network to learn.  

Table 1. Accuracy results for the gray-scale-image strategy. 

 
 

B. STRATEGY II: STATISTICAL N-GRAMS  

The strategy of identifying particular N-grams, from Figure 2, predicted the 

correct classification for the binary sample an average of 89% of the time with just over 

1% standard deviation between the test runs as shown in Table 2. The precision is 

recognizably lower than the recall of the model. This means the model identified most 

malware samples but did so while incorrectly predicting a considerable portion of non-

malware as malware, also known as false positives. Table 4 shows the average 



19 

probabilities of each output neuron. The rows indicate the status of the predictions. When 

the neural network predicted correctly, the probability of the correct neuron is high, 

relative to incorrect predictions, and has a smaller percentage of deviation than when the 

neural network predicted incorrectly. Also, when predicting correctly, the average output 

probability of the malware neuron is higher than the benign neuron.  

Table 2. Accuracy results of the statistical-N-gram strategy 

 

Table 3. Confusion matrix of one of the ten test runs for the 
statistical-N-gram strategy. 

 

Table 4. Average probabilities at each output neuron in the N-gram strategy 

 
 

C. STRATEGY III: DYNAMIC LINK LIBRARIES AND SECTIONS 

The accuracy of the dynamic-link-library strategy, from Figure 3, performed 

similarly to the previous strategy in correctly classifying an average of 90% of the binary 

samples as shown in Table 5. The precision is noticeably higher than the recall. This 

means that when the model predicts the binary as malware, it is often correct. However, it 

does not properly identify more than 13% of the malware samples. The output neuron 

probabilities in Table 7 are similar to those in Table 4 such that the probabilities are 

relatively high, with little deviation, when correctly predicting the classification. The 
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difference is that, when correctly predicting the class, the malware neuron averages a 

higher probability.  

Table 5. Accuracy results of the dynamic-link-library strategy 

 

Table 6. Confusion matrix  

 

Table 7. Average probabilities of each output neuron in the 
dynamic-link-library strategy 
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V. CONCLUSION 

A. FINDINGS 

Two strategies performed at an accuracy of around 90% while the third strategy 

performed poorly. The binary-to-grayscale image-conversion strategy lost information 

during the conversion process and extracted too-sparse data, contributing to its poor 

performance. Large binaries are very susceptible to information loss; for example, a 

binary of size 8 KB would require averaging four 16-bit values, and the average is not 

often unique.  

The statistical-N-gram strategy and the dynamic-link-library strategy had overall 

similar performance but had different performance in precision and recall. The N-gram 

strategy resulted in a better recall than precision whereas the dynamic-link-library 

strategy had better recall. The probabilities of the output neurons in the two strategies 

were higher, with less deviation, when the model correctly predicted the class. Although 

the strategies performed at around 90% in accuracy, previous work found better-

performing strategies (Kolosnjaji et al., 2017; Raff, 2017). Raff et al. were able to 

achieve a 94% accuracy using their set of 2 million binary samples. Using a hybrid neural 

network consisting of feed-forward and convolutional architectures, Kolosnjaji et al. 

achieved a classification accuracy of 92%.  

B. FUTURE WORK 

Our results were encouraging, but further improvements are possible. The number 

of features and the hidden-layer sizes can be adjusted for the two feed-forward neural-

network strategies. However, the possibility of overfitting must be considered. In 

particular, the number of weights between the inputs and the first layer must never 

exceed the number of data samples, so increasing the number of data samples would be 

beneficial.  

Because the precision and recall for the two feed-forward neural-network 

strategies are opposite of one another, it could be useful to combine the two strategies in 

some way such as adding their outputs or combining them with additional neurons.  
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APPENDIX.  NEURAL NETWORK ARCHITECTURES 

################# Start Binary-to-grayscale 16-bit PART 1  #################### 
 
#!/usr/bin/python 
 
import numpy as np 
import matplotlib.pyplot as plt 
import os   
import struct 
import pickle 
 
BENIGN=True 
MALWARE=False 
 
if BENIGN: 
    benign_dir ='/home/nps/Desktop/CNN_Malware_Analysis/Binaries/' 
    directory=benign_dir 
    output_value=0 
    pickle_in="/home/nps/Desktop/CNN_Malware_Analysis/pickles/bin2img_B_input" 
    pickle_out="/home/nps/Desktop/CNN_Malware_Analysis/pickles/bin2img_B_output" 
    print('BENIGN START') 
 
if MALWARE: 
    malware_dir = '/home/nps/Documents/Malware/Virus.Win/' 
    directory=malware_dir 
    output_value=1 
    pickle_in="/home/nps/Desktop/CNN_Malware_Analysis/pickles/bin2img_M_input" 
    pickle_out="/home/nps/Desktop/CNN_Malware_Analysis/pickles/bin2img_M_output" 
    print('MALWARE START') 
 
 
vectors16=[] 
v16=np.empty([32,32], dtype=int) 
v16x=[] 
output_arr=[] 
 
 
for filename in os.listdir(directory): 
    full_path = directory + filename 
    if os.path.isfile(full_path): 
        with open(full_path,"rb") as binary_file: 
            del vectors16[:] 
            data=binary_file.read() 
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            file_size=os.stat(full_path).st_size 
            modulo_result=file_size%2048 
            block_size=file_size//2048 
            binary_file.seek(0) 
            if block_size==0: 
                block_size=1 
             
            for v in range(1024): 
                avg=0 
                for x in range(block_size): 
                    bytes16=binary_file.read(1) 
                    if len(bytes16) < 1: 
                        break 
                    g1=ord(struct.unpack('c',bytes16)[0])*256 
                    bytes16=binary_file.read(1) 
                    if len(bytes16) < 1: 
                        break 
                    avg=ord(struct.unpack('c',bytes16)[0]) + g1 
                
                col=v%32 
                row=v//32 
                vectors16.append(avg/block_size) 
                v16[row,col]=avg/block_size 
 
 
            nvectors16=np.array(vectors16) 
            v16x.append(np.copy(nvectors16)) 
            output_arr.append(output_value) 
 
npVec16=np.array(v16x) 
out_arr=np.array(output_arr) 
 
pickle.dump(npVec16, open(pickle_in, "wb")) 
pickle.dump(out_arr, open(pickle_out, "wb")) 
 
 
################# Binary-to-grayscale 16-bit PART 2  ######################### 
 
 
#!/usr/bin/python 
 
from __future__ import absolute_import 
from __future__ import division 
from __future__ import print_function 
from sklearn.model_selection import train_test_split 



25 

 
import numpy as np 
import tensorflow as tf 
import pickle 
 
tf.logging.set_verbosity(tf.logging.INFO) 
 
def cnn_model_fn(features, labels, mode): 
 
    input_layer = tf.reshape(features["x"], [-1, 32, 32, 1]) 
 
    # Convolutional Layer #1 
    conv1 = tf.layers.conv2d( 
      inputs=input_layer, 
      filters=32, 
      kernel_size=[5, 5], 
      padding="same", 
      activation=tf.nn.relu) 
 
    # Pooling Layer #1 
    pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) 
 
    # Convolutional Layer #2 and Pooling Layer #2 
    conv2 = tf.layers.conv2d( 
      inputs=pool1, 
      filters=64, 
      kernel_size=[3, 3], 
      padding="same", 
      activation=tf.nn.relu) 
    pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) 
 
    # Dense Layer 
    pool2_flat = tf.reshape(pool2, [-1, 8 * 8 * 64]) 
    dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu) 
    dropout = tf.layers.dropout( 
      inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN) 
 
    # Logits Layer 
    logits = tf.layers.dense(inputs=dropout, units=2) 
 
    predictions = { 
      "classes": tf.argmax(input=logits, axis=1), 
      "probabilities": tf.nn.softmax(logits, name="softmax_tensor") 
    } 
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    if mode == tf.estimator.ModeKeys.PREDICT: 
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) 
 
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits) 
 
    if mode == tf.estimator.ModeKeys.TRAIN: 
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001) 
        train_op = optimizer.minimize( 
            loss=loss, 
            global_step=tf.train.get_global_step()) 
        return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) 
 
    eval_metric_ops = { 
      "accuracy": tf.metrics.accuracy( 
          labels=labels, predictions=predictions["classes"])} 
    return tf.estimator.EstimatorSpec( 
        mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) 
 
 
def main(): 
 
    benign_data = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_image/bi
n2img_B_input", "rb")) 
    benign_labels = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_image/bi
n2img_B_output", "rb")) 
    malware_data = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_image/bi
n2img_M_input", "rb")) 
    malware_labels = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_image/bi
n2img_M_output", "rb")) 
 
    input_array = np.concatenate((benign_data, malware_data), axis=0) 
    output_array = np.concatenate((benign_labels, malware_labels), axis=0) 
 
    input_df=pd.DataFrame(input_array) 
    output_df=pd.DataFrame(output_array) 
 
    cross_val_num=10 
 
    for i in range(cross_val_num): 
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        X_train, x_test, Y_train, y_test = train_test_split(input_df, output_df, test_size = 
0.2, shuffle=True)  
 
        train_data=np.asarray(X_train) 
        train_labels=np.asarray(x_test) 
        eval_data=np.asarray(Y_train) 
        eval_labels=np.asarray(y_test)     
 
        bin2img_classifier = tf.estimator.Estimator( 
        model_fn=cnn_model_fn, 
model_dir="/home/nps/Desktop/CNN_Malware_Analysis/models/bin2img_convnet_mo
del") 
 
        tensors_to_log = {"probabilities": "softmax_tensor"} 
        logging_hook = tf.train.LoggingTensorHook( 
            tensors=tensors_to_log, every_n_iter=50) 
 
    # Training 
        train_input_fn = tf.estimator.inputs.numpy_input_fn( 
            x={"x": train_data}, 
            y=train_labels, 
            batch_size=100, 
            num_epochs=None, 
            shuffle=True) 
        bin2img_classifier.train( 
            input_fn=train_input_fn, 
            steps=20000, 
            hooks=[logging_hook]) 
 
    # Testing 
        eval_input_fn = tf.estimator.inputs.numpy_input_fn( 
            x={"x": eval_data}, 
            y=eval_labels, 
            num_epochs=1, 
            shuffle=False) 
        eval_results = bin2img_classifier.evaluate(input_fn=eval_input_fn) 
        print(eval_results) 
 
if __name__ == "__main__": 
    main() 
 
 
############  START STATISTICAL N_GRAM ANALYSIS PART 1 ############ 
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#!/usr/bin/python 
 
import numpy as np 
import os   
import struct 
import pickle 
from collections import Counter 
 
benign_dir ='/home/nps/Desktop/CNN_Malware_Analysis/Binaries/' 
malware_dir = '/home/nps/Documents/Malware/Virus.Win/' 
 
gram2_run=True 
gram3_run=True 
gram4_run=True 
 
byte_hist1_S3={} 
byte_hist2_S3={} 
byte_hist3_S3={} 
byte_hist4_S3={} 
 
byte_hist1_B={} 
byte_hist2_B={} 
byte_hist3_B={} 
byte_hist4_B={} 
 
for b in range(2^8): 
    byte_hist1_B[int(b)]=0 
 
if gram2_run: 
    for b in range(2^16): 
        byte_hist2_B[int(b)]=0 
 
if gram3_run: 
    for b in range(2^24): 
        byte_hist3_B[int(b)]=0 
 
if gram4_run: 
    for b in range(2^32): 
        byte_hist4_B[int(b)]=0 
 
print('BENIGN START') 
for filename in os.listdir(benign_dir): 
    full_path = benign_dir + filename 
    if os.path.isfile(full_path): 
        with open(full_path,"rb") as binary_file: 
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            data=binary_file.read() 
 
            gram1=0 
            gram2=0 
            gram3=0 
            gram4=0 
 
            for byte in data: 
                gram1=ord(struct.unpack('c',byte)[0]) 
 
                if gram1 in byte_hist1_B: 
                 byte_hist1_B[gram1]+=1 
                else: 
                 byte_hist1_B[gram1]=1 
                if gram2_run: 
                 g2 = gram1 + gram2*256 
                 if g2 in byte_hist2_B: 
                  byte_hist2_B[g2]+=1 
                 else: 
                  byte_hist2_B[g2]=1 
                if gram3_run: 
                 g3 = gram1 + gram2*256 + gram3*256*256 
                 if g3 in byte_hist3_B: 
                  byte_hist3_B[g3]+=1 
                 else: 
                  byte_hist3_B[g3]=1 
                if gram4_run: 
                 g4 = gram1 + gram2*256 + gram3*256*256 + gram4*256*256*256 
                 if g4 in byte_hist4_B: 
                  byte_hist4_B[g4]+=1 
                 else: 
                  byte_hist4_B[g4]=1 
 
                gram4 = gram3 
                gram3 = gram2 
                gram2 = gram1 
 
            binary_file.close() 
 
 
print('MEANS/STD BENIGN') 
gram1_meanB = np.mean(byte_hist1_B.values()) 
gram1_stdB = np.std(byte_hist1_B.values()) 
print('GRAM 1 Mean/std') 
print(gram1_meanB) 
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print(gram1_stdB) 
 
if gram2_run: 
    gram2_meanB = np.mean(byte_hist2_B.values()) 
    gram2_stdB = np.std(byte_hist2_B.values()) 
    print('GRAM 2 Mean/std') 
    print(gram2_meanB) 
    print(gram2_stdB) 
 
    for key, value in byte_hist2_B.items(): 
        byte_hist2_S3[key]=((value-gram2_meanB)/gram2_stdB)*10 
 
if gram3_run: 
    gram3_meanB = np.mean(byte_hist3_B.values()) 
    gram3_stdB = np.std(byte_hist3_B.values()) 
    print('GRAM 3 Mean/std') 
    print(gram3_meanB) 
    print(gram3_stdB) 
 
    for key, value in byte_hist3_B.items(): 
        byte_hist3_S3[key]=((value-gram3_meanB)/gram3_stdB)*10 
 
if gram4_run: 
    gram4_meanB = np.mean(byte_hist4_B.values()) 
    gram4_stdB = np.std(byte_hist4_B.values()) 
    print('GRAM 4 Mean/std') 
    print(gram4_meanB) 
    print(gram4_stdB) 
 
    for key, value in byte_hist4_B.items(): 
        byte_hist4_S3[key]=((value-gram4_meanB)/gram4_stdB)*10 
 
byte_hist1_B.clear() 
byte_hist2_B.clear() 
byte_hist3_B.clear() 
byte_hist4_B.clear() 
 
###   END BENIGN ANALYSIS   ### 
### START MALWARE ANALYSIS ### 
 
 
byte_hist1_M={} 
byte_hist2_M={} 
byte_hist3_M={} 
byte_hist4_M={} 
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print('MALWARE START') 
for filename in os.listdir(malware_dir): 
    full_path = malware_dir + filename 
    if os.path.isfile(full_path): 
        with open(full_path,"rb") as binary_file: 
            data=binary_file.read() 
 
            gram1=0 
            gram2=0 
            gram3=0 
            gram4=0 
 
            for byte in data: 
                gram1=ord(struct.unpack('c',byte)[0]) 
 
                if gram1 in byte_hist1_M: 
                 byte_hist1_M[gram1]+=1 
                else: 
                 byte_hist1_M[gram1]=1 
                if gram2_run: 
                 g2 = gram1 + gram2*256 
                 if g2 in byte_hist2_M: 
                  byte_hist2_M[g2]+=1 
                 else: 
                  byte_hist2_M[g2]=1 
                if gram3_run: 
                 g3 = gram1 + gram2*256 + gram3*256*256 
                 if g3 in byte_hist3_M: 
                  byte_hist3_M[g3]+=1 
                 else: 
                  byte_hist3_M[g3]=1 
                if gram4_run: 
                 g4 = gram1 + gram2*256 + gram3*256*256 + gram4*256*256*256 
                 if g4 in byte_hist4_M: 
                  byte_hist4_M[g4]+=1 
                 else: 
                  byte_hist4_M[g4]=1 
 
                gram4 = gram3 
                gram3 = gram2 
                gram2 = gram1 
 
    binary_file.close() 
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print('MEANS/STD MALWARE') 
print('GRAM 1 Mean/std') 
gram1_meanM = np.mean(byte_hist1_M.values()) 
gram1_stdM = np.std(byte_hist1_M.values()) 
print(gram1_meanM) 
print(gram1_stdM) 
 
if gram2_run: 
    gram2_meanM = np.mean(byte_hist2_M.values()) 
    gram2_stdM = np.std(byte_hist2_M.values()) 
    print('GRAM 2 Mean/std') 
    print(gram2_meanM) 
    print(gram2_stdM) 
 
    for key, value in byte_hist2_M.items(): 
        if key in byte_hist2_S3: 
            if (byte_hist2_S3[key]/10)/((value-gram2_meanM)/gram2_stdM)>1: 
                byte_hist2_S3[key]=(byte_hist2_S3[key]/10)/((value-
gram2_meanM)/gram2_stdM) 
            else: 
                byte_hist2_S3[key]=((value-
gram2_meanM)/gram2_stdM)/(byte_hist2_S3[key]/10) 
        else: 
            byte_hist2_S3[key]=10 
 
if gram3_run: 
    gram3_meanM = np.mean(byte_hist3_M.values()) 
    gram3_stdM = np.std(byte_hist3_M.values()) 
    print('GRAM 3 Mean/std') 
    print(gram3_meanM) 
    print(gram3_stdM) 
 
    for key, value in byte_hist3_M.items(): 
        if key in byte_hist3_S3: 
 
            if (byte_hist3_S3[key]/10)/((value-gram3_meanM)/gram3_stdM)>1: 
                byte_hist3_S3[key]=(byte_hist3_S3[key]/10)/((value-
gram3_meanM)/gram3_stdM) 
            else: 
                byte_hist3_S3[key]=((value-
gram3_meanM)/gram3_stdM)/(byte_hist3_S3[key]/10) 
        else: 
            byte_hist3_S3[key]=10 
 
if gram4_run: 
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    gram4_meanM = np.mean(byte_hist4_M.values()) 
    gram4_stdM = np.std(byte_hist4_M.values()) 
    print('GRAM 4 Mean/std') 
    print(gram4_meanM) 
    print(gram4_stdM) 
 
    for key, value in byte_hist4_M.items(): 
     
        if key in byte_hist4_S3: 
            if (byte_hist4_S3[key]/10)/((value-gram4_meanM)/gram4_stdM)>1: 
                byte_hist4_S3[key]=(byte_hist4_S3[key]/10)/((value-
gram4_meanM)/gram4_stdM) 
            else: 
                byte_hist4_S3[key]=((value-
gram4_meanM)/gram4_stdM)/(byte_hist4_S3[key]/10) 
        else: 
            byte_hist4_S3[key]=10 
 
byte_hist1_M.clear() 
byte_hist2_M.clear() 
byte_hist3_M.clear() 
byte_hist4_M.clear() 
 
###    END MALWARE ANALYSIS    ### 
### START STATISTICAL ANALYSIS ### 
 
pickle_hist2_3={} 
pickle_hist3_3={} 
pickle_hist4_3={} 
 
if gram2_run: 
    g2_mean = np.mean(byte_hist2_S3.values()) 
    g2_std = np.std(byte_hist2_S3.values()) 
 
    for key, value in byte_hist2_S3.items(): 
        if value>(g2_mean+3*g2_std) or value<(g2_mean-3*g2_std): 
            pickle_hist2_3[key]=1 
 
if gram3_run: 
    g3_mean = np.mean(byte_hist3_S3.values()) 
    g3_std = np.std(byte_hist3_S3.values()) 
 
    vc = Counter(byte_hist3_S3.itervalues()) 
    for key, value in vc.most_common(50): 
            pickle_hist3_3[key]=1 
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if gram4_run: 
    g4_mean = np.mean(byte_hist4_S3.values()) 
    g4_std = np.std(byte_hist4_S3.values()) 
 
    vc = Counter(byte_hist4_S3.itervalues()) 
    for key, value in vc.most_common(100): 
            pickle_hist4_3[key]=1 
 
pickle_hist2_3std="/home/nps/Desktop/CNN_Malware_Analysis/pickles/bb_v2_hist2_3s
td" 
pickle_hist3_3std="/home/nps/Desktop/CNN_Malware_Analysis/pickles/bb_v2_hist3_5
0" 
pickle_hist4_3std="/home/nps/Desktop/CNN_Malware_Analysis/pickles/bb_v2_hist4_1
00" 
 
if gram2_run: 
    pickle.dump(pickle_hist2_3, open(pickle_hist2_3std, "wb")) 
if gram3_run: 
    pickle.dump(pickle_hist3_3, open(pickle_hist3_3std, "wb")) 
if gram4_run: 
    pickle.dump(pickle_hist4_3, open(pickle_hist4_3std, "wb")) 
 
################ STATISTICAL N_GRAM ANALYSIS PART 2 ############### 
 
#!/usr/bin/python 
 
import numpy as np 
import os   
import struct 
import pickle 
 
gram2_run=True 
gram3_run=True 
gram4_run=True 
 
benign_dir ='/home/nps/Desktop/CNN_Malware_Analysis/Binaries/' 
malware_dir = '/home/nps/Documents/Malware/Virus.Win/' 
 
hist2_3std = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_stats/bb_
v2_hist2_3std", "rb")) 
hist3_3std = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_stats/bb_
v2_hist3_50", "rb")) 



35 

hist4_3std = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_stats/bb_
v2_hist4_100", "rb")) 
 
sample=[] 
inputs=[] 
output_arr=[] 
 
byte_hist1_B={} 
byte_hist2_B={} 
byte_hist3_B={} 
byte_hist4_B={} 
 
BENIGN=True 
MALWARE=False 
output_value=-1 
 
if BENIGN: 
    benign_dir ='/home/james/Desktop/CNN_Malware_Analysis/Binaries/' 
    directory=benign_dir 
    output_value=0 
    
pickle_in="/home/james/Desktop/CNN_Malware_Analysis/pickles/binarybytesCount_v2
2_B_input" 
    
pickle_out="/home/james/Desktop/CNN_Malware_Analysis/pickles/binarybytesCount_v
22_B_output" 
    print('BENIGN START') 
 
if MALWARE: 
    malware_dir = '/home/james/Documents/Malware/Virus.Win/' 
    directory=malware_dir 
    output_value=1 
    
pickle_in="/home/james/Desktop/CNN_Malware_Analysis/pickles/binarybytesCount_v2
2_M_input" 
    
pickle_out="/home/james/Desktop/CNN_Malware_Analysis/pickles/binarybytesCount_v
22_M_output" 
    print('MALWARE START') 
 
for filename in os.listdir(directory): 
    full_path = directory + filename 
    if os.path.isfile(full_path): 
        with open(full_path,"rb") as binary_file: 
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            del sample[:] 
            byte_hist1_B.clear() 
            byte_hist2_B.clear() 
            byte_hist3_B.clear() 
            byte_hist4_B.clear() 
            data=binary_file.read() 
            gram1=0 
            gram2=0 
            gram3=0 
            gram4=0 
            count = 0 
 
            for byte in data: 
                gram1=ord(struct.unpack('c',byte)[0]) 
                count += 1 
                if gram1 in byte_hist1_B: 
                 byte_hist1_B[gram1]+=1 
                else: 
                 byte_hist1_B[gram1]=1 
                if count>2: 
                    if gram2_run: 
                     g2 = gram1 + gram2*256 
                    if g2 in byte_hist2_B: 
                         byte_hist2_B[g2]+=1 
                    else: 
                         byte_hist2_B[g2]=1 
                if count>3: 
                    if gram3_run: 
                     g3 = gram1 + gram2*256 + gram3*256*256 
                    if g3 in byte_hist3_B: 
                        byte_hist3_B[g3]+=1 
                    else: 
                        byte_hist3_B[g3]=1 
                if count>4: 
                    if gram4_run: 
                     g4 = gram1 + gram2*256 + gram3*256*256 + gram4*256*256*256 
                    if g4 in byte_hist4_B: 
                        byte_hist4_B[g4]+=1 
                    else: 
                        byte_hist4_B[g4]=1 
 
                gram4 = gram3 
                gram3 = gram2 
                gram2 = gram1 
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            binary_file.close() 
 
            for key,value in sorted(hist2_3std.items()): 
                if key in byte_hist2_B: 
                    sample.append(byte_hist2_B[key]) 
                else: 
                    sample.append(0) 
            for key,value in sorted(hist3_3std.items()): 
                if key in byte_hist3_B: 
                    sample.append(byte_hist3_B[key]) 
                else: 
                    sample.append(0) 
 
            for key,value in sorted(hist4_3std.items()): 
                if key in byte_hist4_B: 
                    sample.append(byte_hist4_B[key]) 
                else: 
                    sample.append(0) 
 
            nsample=np.array(sample) 
            inputs.append(np.copy(nsample)) 
            output_arr.append(output_value) 
 
np_inputs=np.array(inputs) 
np_output=np.array(output_arr) 
pickle.dump(np_inputs, open(pickle_in, "wb")) 
pickle.dump(np_output, open(pickle_out, "wb")) 
 
################ STATISTICAL N_GRAM ANALYSIS PART 3 ############### 
 
#!/usr/bin/python 
 
import numpy as np 
import pandas as pd 
import seaborn as sns 
import pickle 
import matplotlib.pyplot as plt 
 
from sklearn.neural_network import MLPClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import confusion_matrix 
from sklearn import metrics 
from sklearn import cross_validation 
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benign_data = 
pickle.load(open("/home/james/Desktop/CNN_Malware_Analysis/pickles/binary_stats/bi
narybytesCount_v22_B_input", "rb")) 
benign_labels = 
pickle.load(open("/home/james/Desktop/CNN_Malware_Analysis/pickles/binary_stats/bi
narybytesCount_v22_B_output", "rb")) 
malware_data = 
pickle.load(open("/home/james/Desktop/CNN_Malware_Analysis/pickles/binary_stats/bi
narybytesCount_v22_M_input", "rb")) 
malware_labels = 
pickle.load(open("/home/james/Desktop/CNN_Malware_Analysis/pickles/binary_stats/bi
narybytesCount_v22_M_output", "rb")) 
 
 
input_array = np.concatenate((benign_data, malware_data), axis=0) 
output_array = np.concatenate((benign_labels, malware_labels), axis=0) 
 
input_df=pd.DataFrame(input_array) 
output_df=pd.DataFrame(output_array) 
 
cross_val_num=10 
 
for i in range(cross_val_num): 
    X_train, x_test, Y_train, y_test = train_test_split(input_df, output_df, test_size = 0.2, 
shuffle=True)  #consider shuffle=True 
 
    feature_size=len(input_array[1]) 
    first_hidden_layer=16 
    second_hidden_layer=4 
 
    classifier=MLPClassifier(solver='adam', alpha=0.001, 
hidden_layer_sizes=(first_hidden_layer,second_hidden_layer)) 
 
    print ("Training...") 
    classifier.fit(X_train,np.ravel(Y_train,order='C')) 
 
    print ("Predicting..") 
    y_pred=classifier.predict(x_test) 
     
    y_pred_proba=classifier.predict_proba(x_test)    
    y2_test=np.asarray(y_test) 
    prob_pred=[] 
    index=0 
    tp=0 
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    tp0B=[] 
    tp1M=[] 
    tn=0 
    tn0B=[] 
    tn1M=[] 
    fp=0 
    fp0B=[] 
    fp1M=[] 
    fn=0 
    fn0B=[] 
    fn1M=[] 
    for j in y_pred_proba: 
        print(j) 
        if j[1] > j[0]: 
            prob_pred.append(1) 
            if y2_test[index] == 1: 
                tp+=1 
                tp0B.append(j[0]) 
                tp1M.append(j[1]) 
            else: 
                fp+=1 
                fp0B.append(j[0]) 
                fp1M.append(j[1]) 
        else: 
            prob_pred.append(0) 
            if y2_test[index] == 0: 
                tn+=1 
                tn0B.append(j[0]) 
                tn1M.append(j[1]) 
            else: 
                fn+=1 
                fn0B.append(j[0]) 
                fn1M.append(j[1])       
        index+=1 
 
    print("Accuracy Score") 
    print(accuracy_score(y_test, y_pred)) 
    print("TP\t"+str(tp)+"\tBenign(0): "+str(np.mean(tp0B)) + " +-
"+str(np.std(tp0B))+"\tMalware(1): "+str(np.mean(tp1M))+" +-"+str(np.std(tp1M))) 
    print("TN\t"+str(tn)+"\tBenign(0): "+str(np.mean(tn0B)) + " +-
"+str(np.std(tn0B))+"\tMalware(1): "+str(np.mean(tn1M))+" +-"+str(np.std(tn1M))) 
    print("FP\t"+str(fp)+"\tBenign(0): "+str(np.mean(fp0B)) + " +-
"+str(np.std(fp0B))+"\tMalware(1): "+str(np.mean(fp1M))+" +-"+str(np.std(fp1M))) 
    print("FN\t"+str(fn)+"\tBenign(0): "+str(np.mean(fn0B)) + " +-
"+str(np.std(fn0B))+"\tMalware(1): "+str(np.mean(fn1M))+" +-"+str(np.std(fn1M))) 
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    print("Confusion Matrix") 
    cm = confusion_matrix(y_test, y_pred) 
    print(cm) 
    TN=float(cm[0,0]) 
    FP=float(cm[0,1]) 
    FN=float(cm[1,0]) 
    TP=float(cm[1,1]) 
    Precision=TP/(TP+FP) 
    print("Precision: " + str(Precision) +"%") 
    Recall=TP/(TP+FN) 
    print("Recall: " + str(Recall) + "%") 
    F_score=2*((Precision*Recall)/(Precision+Recall)) 
    print("F-score: " + str(F_score) + "%") 
 
# Model persistence 
pickle_clf="/home/james/Desktop/CNN_Malware_Analysis/models/binary_stats_MLP/n
_gram_stats" 
pickle.dump(classifier, open(pickle_clf, "wb")) 
 
 
########### START DYNAMIC-LINK-LIBRARY STRATEGY PART 1 ########## 
 
#!/usr/bin/python 
 
import numpy as np 
import pickle 
import json 
 
m_dll={} 
m_call={} 
m_section={} 
m_num_sections={} 
 
b_dll={} 
b_call={} 
b_section={} 
b_num_sections={} 
 
analysis_dir='/home/nps/.cuckoo/storage/analyses/' 
report_file='/reports/report.json' 
start_ben=3252 
 
for analyses_num in range(1,5808): 
 
    report_json=analysis_dir + str(analyses_num) + report_file 
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    data = json.load(open(report_json)) 
 
    for imports in data['static']['pe_imports']: 
        dll=imports['dll'] 
        if analyses_num < 3252: 
            #Malware 
            if dll in m_dll: 
                m_dll[dll]+=1 
            else: 
                m_dll[dll]=1 
        else: 
            #Benign 
            if dll in b_dll: 
                b_dll[dll]+=1 
            else: 
                b_dll[dll]=1 
 
        for name in imports['imports']: 
            call=name['name'] 
            if analyses_num < 3252: 
                #Malware 
                if call in m_call: 
                    m_call[call]+=1 
                else: 
                    m_call[call]=1 
            else: 
                #Benign 
                if call in b_call: 
                    b_call[call]+=1 
                else: 
                    b_call[call]=1 
 
    number_of_sections=0 
    for imports in data['static']['pe_sections']: 
        section=imports['name'] 
        entropy=imports['entropy'] 
        number_of_sections+=1 
 
        if analyses_num < 3252: 
            #Malware 
            if section in m_section: 
                m_section[section]+=1 
            else: 
                m_section[section]=1 
        else: 
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            #Benign 
            if section in b_section: 
                b_section[section]+=1 
            else: 
                b_section[section]=1 
 
    if analyses_num < 3252: 
        #Malware 
        if number_of_sections in m_num_sections: 
            m_num_sections[number_of_sections]+=1 
        else: 
            m_num_sections[number_of_sections]=1 
    else: 
        #Benign 
        if number_of_sections in b_num_sections: 
            b_num_sections[number_of_sections]+=1 
        else: 
            b_num_sections[number_of_sections]=1 
 
 
feat_dict={} 
features=[] 
output_arr=[] 
freq=1300 # Results in Top 10 DLL/Section names 
malware=1 
benign=0 
for key,value in sorted(m_dll.items()): 
    if value >= freq: 
        feat_dict[key]=1 
 
for key,value in sorted(m_section.items()): 
    if value >= freq: 
        feat_dict[key]=1 
 
for key,value in sorted(b_dll.items()): 
    if value >= freq: 
        feat_dict[key]=1 
 
for key,value in sorted(b_section.items()): 
    if value >= freq: 
        feat_dict[key]=1 
 
for key,value in feat_dict.items(): 
    features.append(key) 
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pickle_in="/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_lib/pe_json"+str
(freq)+"(freq)_input" 
np_inputs=np.array(features) 
pickle.dump(np_inputs, open(pickle_in, "wb")) 
 
 
########### DYNAMIC-LINK-LIBRARY STRATEGY PART 2 ################# 
 
#!/usr/bin/python 
 
import numpy as np 
import pickle 
import json 
 
freq=1300 # Results in Top 10 DLL/Section names 
feature_set = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_lib/pe_js
on"+str(freq)+"(freq)_input", "rb")) 
 
sample=[] 
feature_array=[] 
output_array=[] 
 
a_feats={} 
a_call={} 
a_section={} 
m_num_sections={} 
 
b_dll={} 
b_call={} 
b_section={} 
b_num_sections={} 
 
analysis_dir='/home/nps/.cuckoo/storage/analyses/' 
report_file='/reports/report.json' 
start_ben=3252 
 
for analyses_num in range(1,5808): 
 
    report_json=analysis_dir + str(analyses_num) + report_file 
    data = json.load(open(report_json)) 
    a_feats.clear() 
    del sample[:] 
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    for imports in data['static']['pe_imports']: 
        dll=imports['dll'] 
        a_feats[dll]=1 
 
        for name in imports['imports']: 
            call=name['name'] 
            a_feats[call]=1 
 
    number_of_sections=0 
    avg_entropy=0 
 
    for imports in data['static']['pe_sections']: 
        section=imports['name'] 
        entropy=imports['entropy'] 
        number_of_sections+=1 
        avg_entropy+=float(entropy) 
        a_feats[section]=1 
 
    for i in range(len(feature_set)): 
        if feature_set[i] in a_feats: 
            sample.append(1) 
        else: 
            sample.append(0) 
 
    sample.append(number_of_sections) 
    sample.append((avg_entropy/number_of_sections)) 
    np_sample=np.array(sample) 
    feature_array.append(np.copy(np_sample)) 
 
    if analyses_num < 3252: 
        output_array.append(1) 
    else: 
        output_array.append(0) 
 
pickle_in="/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_lib/pe_json"+str
(freq)+"(freq)_samples_input" 
pickle_out="/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_lib/pe_json"+st
r(freq)+"(freq)_samples_output" 
np_inputs=np.array(feature_array) 
np_output=np.array(output_array) 
pickle.dump(np_inputs, open(pickle_in, "wb")) 
pickle.dump(np_output, open(pickle_out, "wb")) 
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########### DYNAMIC-LINK-LIBRARY STRATEGY PART 3 ################# 
 
#!/usr/bin/python 
 
import numpy as np 
import pandas as pd 
import seaborn as sns 
import pickle 
import matplotlib.pyplot as plt 
 
from sklearn.neural_network import MLPClassifier 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
from sklearn.metrics import confusion_matrix 
from sklearn import metrics 
from sklearn import cross_validation 
 
cross_val_num=1 
freq=1300 
input_array = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_lib/pe_js
on"+str(freq)+"(freq)_samples_input", "rb")) 
output_array = 
pickle.load(open("/home/nps/Desktop/CNN_Malware_Analysis/pickles/binary_lib/pe_js
on"+str(freq)+"(freq)_samples_output", "rb")) 
 
 
input_df=pd.DataFrame(input_array) 
output_df=pd.DataFrame(output_array) 
 
for i in range(cross_val_num): 
    X_train, x_test, Y_train, y_test = train_test_split(input_df, output_df, test_size = 0.2, 
shuffle=True)  #consider shuffle=True 
 
    feature_size=len(input_array[1]) 
    first_hidden_layer=feature_size 
    second_hidden_layer=first_hidden_layer/2 
    third_hidden_layer=second_hidden_layer/2 
 
    classifier=MLPClassifier(solver='adam', alpha=0.001, 
hidden_layer_sizes=(first_hidden_layer,second_hidden_layer)) 
 
    print ("Training...") 
    classifier.fit(X_train,np.ravel(Y_train,order='C')) 
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    print ("Predicting..") 
    y_pred=classifier.predict(x_test) 
 
    y_pred_proba=classifier.predict_proba(x_test) 
    y2_test=np.asarray(y_test) 
    prob_pred=[] 
    index=0 
    tp=0 
    tp0B=[] 
    tp1M=[] 
    tn=0 
    tn0B=[] 
    tn1M=[] 
    fp=0 
    fp0B=[] 
    fp1M=[] 
    fn=0 
    fn0B=[] 
    fn1M=[] 
    for j in y_pred_proba: 
        if j[1] > j[0]: 
            prob_pred.append(1) 
            if y2_test[index] == 1: 
                tp+=1 
                tp0B.append(j[0]) 
                tp1M.append(j[1]) 
            else: 
                fp+=1 
                fp0B.append(j[0]) 
                fp1M.append(j[1]) 
        else: 
            prob_pred.append(0) 
            if y2_test[index] == 0: 
                tn+=1 
                tn0B.append(j[0]) 
                tn1M.append(j[1]) 
            else: 
                fn+=1 
                fn0B.append(j[0]) 
                fn1M.append(j[1])    
        index+=1 
 
    print("Accuracy Score") 
    print(accuracy_score(y_test, y_pred)) 
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    print("TP\t"+str(tp)+"\tBenign(0): "+str(np.mean(tp0B)) + " +-
"+str(np.std(tp0B))+"\tMalware(1): "+str(np.mean(tp1M))+" +-"+str(np.std(tp1M))) 
    print("TN\t"+str(tn)+"\tBenign(0): "+str(np.mean(tn0B)) + " +-
"+str(np.std(tn0B))+"\tMalware(1): "+str(np.mean(tn1M))+" +-"+str(np.std(tn1M))) 
    print("FP\t"+str(fp)+"\tBenign(0): "+str(np.mean(fp0B)) + " +-
"+str(np.std(fp0B))+"\tMalware(1): "+str(np.mean(fp1M))+" +-"+str(np.std(fp1M))) 
    print("FN\t"+str(fn)+"\tBenign(0): "+str(np.mean(fn0B)) + " +-
"+str(np.std(fn0B))+"\tMalware(1): "+str(np.mean(fn1M))+" +-"+str(np.std(fn1M))) 
    print("Confusion Matrix") 
    cm = confusion_matrix(y_test, y_pred) 
    print(cm) 
    TN=float(cm[0,0]) 
    FP=float(cm[0,1]) 
    FN=float(cm[1,0]) 
    TP=float(cm[1,1]) 
    Precision=TP/(TP+FP) 
    print("Precision: " + str(Precision) +"%") 
    Recall=TP/(TP+FN) 
    print("Recall: " + str(Recall) + "%") 
    F_score=2*((Precision*Recall)/(Precision+Recall)) 
    print("F-score: " + str(F_score) + "%") 
 
# Model persistence 
pickle_clf="/home/nps/Desktop/CNN_Malware_Analysis/models/binary_lib_MLP/pe_js
on" + str(freq) 
pickle.dump(classifier, open(pickle_clf, "wb")) 
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